跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页
最近更改
随机页面
社群首页
帮助
希顶相关网站
希顶社区官网
(原作)希顶翻译器
〇改希顶转写器
希顶模组服务器
搜索
搜索
创建账号
登录
个人工具
创建账号
登录
查看“User:ColorfulGalaxy/Encyclopedia of numbers”的源代码
用户页
讨论
不转换
不转换
简体
繁體
新加坡简体
阅读
查看源代码
查看历史
工具
工具
移至侧栏
隐藏
操作
阅读
查看源代码
查看历史
常规
链入页面
相关更改
用户贡献
日志
查看用户组
特殊页面
页面信息
查看头像
←
User:ColorfulGalaxy/Encyclopedia of numbers
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于这些用户组的用户执行:
用户
、storagereadable
您必须确认您的电子邮件地址才能编辑页面。请通过
参数设置
设置并确认您的电子邮件地址。
您可以查看和复制此页面的源代码。
__NOTOC__ This article is inspired by [http://mathigon.org/almanac this] article, which was biased towards decimal properties and did not mention imaginary numbers. This article, instead, is biased towards septenary and tetradecimal properties, though the numbers are written in decimal. [[Shidinn language|Shidinn]]-related entries are also welcome. {| border="0" class="toccolours wikitable" |- ! colspan="9" | {{MediaWiki:Toc}} |- | align="center" | [[#0|0]] || [[#1|1]] || [[#2|2]] || [[#7|7]] || [[#14|14]] || [[#49|49]] || [[#196|196]] || [[#343|343]] || [[#2744|2744]] __NOTOC__ |- | align="center" colspan="9" | [[#top|Top of page]] — [[#Legend|Legend]] — [[#See also|See also]] — [[#External links|External links]] |} ==Legend== <div style="border:2px solid blue;">Positive prime numbers </div> <div style="border:2px solid #ff00ff;">Number (excluding positive prime numbers) whose absolute value is an integer</div> <div style="border:2px solid orange;">Number whose absolute value is a rational number that is not integer</div> <div style="border:2px solid #00ffff;">Number whose absolute value is an algebraic irrational number</div> <div style="border:2px solid green;">Number whose absolute value is a transcendental real number</div> <div style="border:2px solid red;">Unknown/approximation</div> Some terms can have subscripts. "Digit<sub>14</sub>"<ref name="digit"/> is read as "tetradecimal digit". ==Numbers== ===0=== <div style="border:2px solid #ff00ff"> * ... is the smallest non-negative number. * ... is the additive identity. </div> ===1=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive number. * ... is the multiplicative identity. </div> ===2=== <div style="border:2px solid blue"> * ... is the smallest positive prime number. * ... is the only even positive prime number. * ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. </div> ===3=== <div style="border:2px solid blue"> * ... is the smallest odd positive prime number. * ... is the smallest Full Reptend Prime<sub>14</sub><ref name="frp"/>. </div> ===4=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive composite number. </div> ===5=== <div style="border:2px solid blue"> * ... is the smallest positive odd number that is not a repunit<sup>2</sup><ref name="repunit"/> number. * ... is the number of Platonic solids. </div> ===6=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive composite number that is not a perfect power. * ... is the largest digit<sub>7</sub><ref name="digit"/>. </div> ===7=== <div style="border:2px solid blue"> * ... is the third smallest repunit<sub>2</sub><ref name="repunit"/> number. * ... is the smallest positive two-digit<sub>7</sub><ref name="digit"/> number. * ... is the second smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. * ... is the smallest positive strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. * ... is the number of classical elements in Shidinn culture. See [[Seven elements]]. * ... is the smallest known positive non-unity integer ''n'' such that there exists a three-digit<sub>n</sub><ref name="digit"/> number k=a×n<sup>2</sup>+b×n+c satisfying that k-1, k and k+1 have a, b and c positive factors respectively. </div> ===8=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive composite cube number. * ... is the smallest positive composite Fibonacci number. * ... is the largest cube in the Fibonacci sequence. * ... is the second smallest repunit<sub>7</sub><ref name="repunit"/> number. * ... is the smallest known repfigit<sub>7</sub><ref name="repfigit"/> number. * ... is the third smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. </div> ===9=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive odd composite number. * ... is the second smallest Smarandache<sub>7</sub><ref name="smarandache"/> number. * ... is the smallest positive integer ''n'' such that 3<sup>''n''</sup> starts with three identical digits<sub>7</sub><ref name="digit"/>. * ... is the smallest positive integer ''n'' such that ''n''<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. </div> ===10=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive even number ''n'' where ''n''-1 is a Fermat pseudoprime<sub>''n''</sub>. * ... is the smallest positive integer that is not a Harshad<sub>7</sub><ref name="harshad"/> number. * ... is a Narcissistic<sub>7</sub><ref name="narcissistic"/> number. * ... is a disarium<sub>7</sub><ref name="disarium"/> number. * ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. </div> ===11=== <div style="border:2px solid blue"> * ... is the smallest positive odd prime number that is not palindromic<sub>2</sub><ref name="palindromic"/>. </div> ===12=== <div style="border:2px solid #ff00ff"> * ... is the smallest abundant number. </div> ===13=== <div style="border:2px solid blue"> * ... is the number of Archimedean solids. * ... is the largest digit<sub>14</sub><ref name="digit"/>. * ... is the third smallest repunit<sub>3</sub><ref name="repunit"/> number. * ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. * ... is the smallest positive odd Fibonacci number that is not palindromic<sub>2</sub><ref name="palindromic"/>. </div> ===14=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive two-digit<sub>14</sub><ref name="digit"/> number. </div> ===15=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive odd composite number that is not a perfect power. * ... is the second smallest repunit<sub>14</sub><ref name="repunit"/> number. </div> ===16=== <div style="border:2px solid #ff00ff"> * ... is the second smallest positive tesseractic number. * ... is the smallest positive integer with five positive factors. * ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. * ... is the second smallest Smarandache<sub>14</sub><ref name="smarandache"/> number. * ... is the smallest positive composite number whose reversal<sub>14</sub><ref name="reversal"/> is prime. </div> ===17=== <div style="border:2px solid blue"> * ... is a Fermat prime. * ... is the smallest prime number that is the concatenation<sub>7</sub><ref name="concatenation"/> of two prime numbers. </div> ===18=== <div style="border:2px solid #ff00ff"> * ... is the smallest two-digit<sub>14</sub><ref name="digit"/> number in the Fibonacci-like sequence starting with 2 and 1. </div> ===19=== <div style="border:2px solid blue"> * ... is the smallest positive odd prime number whose reversal<sub>2</sub><ref name="reversal"/> is composite. </div> ===20=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. </div> ===21=== <div style="border:2px solid #ff00ff"> * ... is the third smallest repunit<sub>4</sub><ref name="repunit"/> number. * ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>14</sub><ref name="happy"/> number. </div> ===22=== <div style="border:2px solid #ff00ff"> </div> ===23=== <div style="border:2px solid blue"> * ... is the smallest prime number that is not a twin prime. * ... is the smaller prime factor of 2047, the smallest Mersenne composite number. </div> ===24=== <div style="border:2px solid #ff00ff"> * ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> ends in three identical digits<sub>7</sub><ref name="digit"/>. </div> ===25=== <div style="border:2px solid #ff00ff"> * ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. * ... is an RDI<sub>14</sub><ref name="rdi"/> of order 2. * ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> starts in three identical digits<sub>7</sub><ref name="digit"/> and ends in three identical digits<sub>7</sub>. </div> ===26=== <div style="border:2px solid #ff00ff"> </div> ===27=== <div style="border:2px solid #ff00ff"> </div> ===28=== <div style="border:2px solid #ff00ff"> </div> ===29=== <div style="border:2px solid blue"> * ... is the smallest positive odd prime number whose reversal<sub>14</sub><ref name="reversal"/> is composite. * ... is the second smallest two-digit<sub>14</sub><ref name="digit"/> number in the Fibonacci-like sequence starting with 2 and 1. * ... is a repfigit<sub>14</sub><ref name="repfigit"/> number. </div> ===30=== <div style="border:2px solid #ff00ff"> * ... is a repdigit<sub>14</sub><ref name="repdigit"/> number. * ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. </div> ===31=== <div style="border:2px solid blue"> * ... is a Mersenne prime. * ... is the smallest prime number that is the concatenation<sub>14</sub><ref name="concatenation"/> of two prime numbers. * ... is the third smallest repunit<sub>5</sub><ref name="repunit"/> number. </div> ===32=== <div style="border:2px solid #ff00ff"> * ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. * ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. </div> ===33=== <div style="border:2px solid #ff00ff"> </div> ===34=== <div style="border:2px solid #ff00ff"> * ... is the smallest known number in a Friedman<sub>14</sub> loop<ref name="friedmanpair"/>: :: 2<sup>6</sup>=64 :: 8<sup>4</sup>=4096 :: 6×(12×8-1)=570 :: 2×12+10=34 </div> ===35=== <div style="border:2px solid #ff00ff"> * ... is in a Friedman<sub>14</sub> loop<ref name="friedmanpair"/>: :: 7<sup>3</sup>=343 :: (1+10)×7=77 :: 5×7=35 :: 7<sup>2</sup>=49 </div> ===36=== <div style="border:2px solid #ff00ff"> </div> ===37=== <div style="border:2px solid blue"> * ... is an RDI<sub>14</sub><ref name="rdi"/> of order 2. </div> ===38=== <div style="border:2px solid #ff00ff"> </div> ===39=== <div style="border:2px solid #ff00ff"> </div> ===40=== <div style="border:2px solid #ff00ff"> * ... is in a Friedman<sub>14</sub> pair<ref name="friedmanpair"/>: :: 12<sup>2</sup>=144 :: 4×10=40 </div> ===41=== <div style="border:2px solid blue"> </div> ===42=== <div style="border:2px solid #ff00ff"> </div> ===43=== <div style="border:2px solid blue"> </div> ===44=== <div style="border:2px solid #ff00ff"> </div> ===45=== <div style="border:2px solid #ff00ff"> * ... is the number of letters in the [[Shidinn alphabet]]. * ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. * ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>7</sub><ref name="happy"/> number. </div> ===46=== <div style="border:2px solid #ff00ff"> </div> ===47=== <div style="border:2px solid blue"> * ... is the [[平原素数系统|representative prime number]] of [[User:Rachel1211]]. </div> ===48=== <div style="border:2px solid #ff00ff"> </div> ===49=== <div style="border:2px solid #ff00ff"> </div> ===50=== <div style="border:2px solid #ff00ff"> </div> ===51=== <div style="border:2px solid #ff00ff"> </div> ===52=== <div style="border:2px solid #ff00ff"> </div> ===53=== <div style="border:2px solid blue"> </div> ===54=== <div style="border:2px solid #ff00ff"> </div> ===55=== <div style="border:2px solid #ff00ff"> </div> ===56=== <div style="border:2px solid #ff00ff"> </div> ===57=== <div style="border:2px solid #ff00ff"> </div> ===58=== <div style="border:2px solid #ff00ff"> </div> ===59=== <div style="border:2px solid blue"> </div> ===60=== <div style="border:2px solid #ff00ff"> </div> ===61=== <div style="border:2px solid blue"> </div> ===62=== <div style="border:2px solid #ff00ff"> </div> ===63=== <div style="border:2px solid #ff00ff"> </div> ===64=== <div style="border:2px solid #ff00ff"> </div> ===65=== <div style="border:2px solid #ff00ff"> * ..., as [http://mathworld.wolfram.com/ExpandedNotation.html 4×14+9], is a Cyclic<sub>14</sub> number<ref name="cyclic"/>. </div> ===66=== <div style="border:2px solid #ff00ff"> </div> ===67=== <div style="border:2px solid blue"> </div> ===68=== <div style="border:2px solid #ff00ff"> </div> ===69=== <div style="border:2px solid #ff00ff"> </div> ===70=== <div style="border:2px solid #ff00ff"> </div> ===71=== <div style="border:2px solid blue"> </div> ===72=== <div style="border:2px solid #ff00ff"> </div> ===73=== <div style="border:2px solid blue"> </div> ===74=== <div style="border:2px solid #ff00ff"> </div> ===75=== <div style="border:2px solid #ff00ff"> </div> ===76=== <div style="border:2px solid #ff00ff"> </div> ===77=== <div style="border:2px solid #ff00ff"> </div> ===78=== <div style="border:2px solid #ff00ff"> </div> ===79=== <div style="border:2px solid blue"> </div> ===80=== <div style="border:2px solid #ff00ff"> </div> ===81=== <div style="border:2px solid #ff00ff"> * ... is the third smallest positive tesseractic number. * ... is in the username of [[User:DGCK81LNN]]. </div> ===82=== <div style="border:2px solid #ff00ff"> </div> ===83=== <div style="border:2px solid blue"> </div> ===84=== <div style="border:2px solid #ff00ff"> </div> ===85=== <div style="border:2px solid #ff00ff"> </div> ===86=== <div style="border:2px solid #ff00ff"> </div> ===87=== <div style="border:2px solid #ff00ff"> </div> ===88=== <div style="border:2px solid #ff00ff"> </div> ===89=== <div style="border:2px solid blue"> </div> ===90=== <div style="border:2px solid #ff00ff"> </div> ===91=== <div style="border:2px solid #ff00ff"> </div> ===92=== <div style="border:2px solid #ff00ff"> </div> ===93=== <div style="border:2px solid #ff00ff"> </div> ===94=== <div style="border:2px solid #ff00ff"> </div> ===95=== <div style="border:2px solid #ff00ff"> </div> ===96=== <div style="border:2px solid #ff00ff"> </div> ===97=== <div style="border:2px solid blue"> </div> ===98=== <div style="border:2px solid #ff00ff"> </div> ===99=== <div style="border:2px solid #ff00ff"> </div> ===100=== <div style="border:2px solid #ff00ff"> </div> ===101=== <div style="border:2px solid blue"> </div> ===102=== <div style="border:2px solid #ff00ff"> </div> ===103=== <div style="border:2px solid blue"> </div> ===104=== <div style="border:2px solid #ff00ff"> </div> ===105=== <div style="border:2px solid #ff00ff"> </div> ===106=== <div style="border:2px solid #ff00ff"> </div> ===107=== <div style="border:2px solid blue"> </div> ===108=== <div style="border:2px solid #ff00ff"> </div> ===109=== <div style="border:2px solid blue"> </div> ===110=== <div style="border:2px solid #ff00ff"> </div> ===111=== <div style="border:2px solid #ff00ff"> </div> ===112=== <div style="border:2px solid #ff00ff"> </div> ===113=== <div style="border:2px solid blue"> </div> ===114=== <div style="border:2px solid #ff00ff"> </div> ===115=== <div style="border:2px solid #ff00ff"> </div> ===116=== <div style="border:2px solid #ff00ff"> </div> ===117=== <div style="border:2px solid #ff00ff"> </div> ===118=== <div style="border:2px solid #ff00ff"> </div> ===119=== <div style="border:2px solid #ff00ff"> </div> ===120=== <div style="border:2px solid #ff00ff"> </div> ===121=== <div style="border:2px solid #ff00ff"> </div> ===122=== <div style="border:2px solid #ff00ff"> </div> ===123=== <div style="border:2px solid #ff00ff"> </div> ===124=== <div style="border:2px solid #ff00ff"> </div> ===125=== <div style="border:2px solid #ff00ff"> </div> ===126=== <div style="border:2px solid #ff00ff"> </div> ===127=== <div style="border:2px solid blue"> </div> ===128=== <div style="border:2px solid #ff00ff"> </div> ===129=== <div style="border:2px solid #ff00ff"> </div> ===130=== <div style="border:2px solid #ff00ff"> </div> ===131=== <div style="border:2px solid blue"> </div> ===132=== <div style="border:2px solid #ff00ff"> </div> ===133=== <div style="border:2px solid #ff00ff"> </div> ===134=== <div style="border:2px solid #ff00ff"> </div> ===135=== <div style="border:2px solid #ff00ff"> </div> ===136=== <div style="border:2px solid #ff00ff"> </div> ===137=== <div style="border:2px solid blue"> </div> ===138=== <div style="border:2px solid #ff00ff"> </div> ===139=== <div style="border:2px solid blue"> </div> ===140=== <div style="border:2px solid #ff00ff"> </div> ===141=== <div style="border:2px solid #ff00ff"> </div> ===142=== <div style="border:2px solid #ff00ff"> </div> ===143=== <div style="border:2px solid #ff00ff"> </div> ===144=== <div style="border:2px solid #ff00ff"> </div> ===145=== <div style="border:2px solid #ff00ff"> </div> ===146=== <div style="border:2px solid #ff00ff"> </div> ===147=== <div style="border:2px solid #ff00ff"> </div> ===148=== <div style="border:2px solid #ff00ff"> </div> ===149=== <div style="border:2px solid blue"> </div> ===150=== <div style="border:2px solid #ff00ff"> </div> ===151=== <div style="border:2px solid blue"> </div> ===152=== <div style="border:2px solid #ff00ff"> </div> ===153=== <div style="border:2px solid #ff00ff"> </div> ===154=== <div style="border:2px solid #ff00ff"> </div> ===155=== <div style="border:2px solid #ff00ff"> </div> ===156=== <div style="border:2px solid #ff00ff"> </div> ===157=== <div style="border:2px solid blue"> </div> ===158=== <div style="border:2px solid #ff00ff"> </div> ===159=== <div style="border:2px solid #ff00ff"> </div> ===160=== <div style="border:2px solid #ff00ff"> </div> ===161=== <div style="border:2px solid #ff00ff"> </div> ===162=== <div style="border:2px solid #ff00ff"> </div> ===163=== <div style="border:2px solid blue"> </div> ===164=== <div style="border:2px solid #ff00ff"> </div> ===165=== <div style="border:2px solid #ff00ff"> </div> ===166=== <div style="border:2px solid #ff00ff"> </div> ===167=== <div style="border:2px solid blue"> </div> ===168=== <div style="border:2px solid #ff00ff"> </div> ===169=== <div style="border:2px solid #ff00ff"> </div> ===170=== <div style="border:2px solid #ff00ff"> </div> ===171=== <div style="border:2px solid #ff00ff"> </div> ===172=== <div style="border:2px solid #ff00ff"> </div> ===173=== <div style="border:2px solid blue"> </div> ===174=== <div style="border:2px solid #ff00ff"> </div> ===175=== <div style="border:2px solid #ff00ff"> </div> ===176=== <div style="border:2px solid #ff00ff"> </div> ===177=== <div style="border:2px solid #ff00ff"> </div> ===178=== <div style="border:2px solid #ff00ff"> </div> ===179=== <div style="border:2px solid blue"> </div> ===180=== <div style="border:2px solid #ff00ff"> </div> ===181=== <div style="border:2px solid blue"> </div> ===182=== <div style="border:2px solid #ff00ff"> </div> ===183=== <div style="border:2px solid #ff00ff"> </div> ===184=== <div style="border:2px solid #ff00ff"> </div> ===185=== <div style="border:2px solid #ff00ff"> </div> ===186=== <div style="border:2px solid #ff00ff"> </div> ===187=== <div style="border:2px solid #ff00ff"> </div> ===188=== <div style="border:2px solid #ff00ff"> </div> ===189=== <div style="border:2px solid #ff00ff"> </div> ===190=== <div style="border:2px solid #ff00ff"> </div> ===191=== <div style="border:2px solid blue"> </div> ===192=== <div style="border:2px solid #ff00ff"> </div> ===193=== <div style="border:2px solid blue"> </div> ===194=== <div style="border:2px solid #ff00ff"> </div> ===195=== <div style="border:2px solid #ff00ff"> </div> ===196=== <div style="border:2px solid #ff00ff"> </div> ===197=== <div style="border:2px solid blue"> </div> ===198=== <div style="border:2px solid #ff00ff"> </div> ===199=== <div style="border:2px solid blue"> </div> ===200=== <div style="border:2px solid #ff00ff"> </div> ===201=== <div style="border:2px solid #ff00ff"> </div> ===202=== <div style="border:2px solid #ff00ff"> </div> ===203=== <div style="border:2px solid #ff00ff"> </div> ===204=== <div style="border:2px solid #ff00ff"> </div> ===205=== <div style="border:2px solid #ff00ff"> </div> ===206=== <div style="border:2px solid #ff00ff"> </div> ===207=== <div style="border:2px solid #ff00ff"> </div> ===208=== <div style="border:2px solid #ff00ff"> </div> ===209=== <div style="border:2px solid #ff00ff"> </div> ===210=== <div style="border:2px solid #ff00ff"> </div> ===211=== <div style="border:2px solid blue"> </div> ===212=== <div style="border:2px solid #ff00ff"> </div> ===213=== <div style="border:2px solid #ff00ff"> </div> ===214=== <div style="border:2px solid #ff00ff"> </div> ===215=== <div style="border:2px solid #ff00ff"> </div> ===216=== <div style="border:2px solid #ff00ff"> </div> ===217=== <div style="border:2px solid #ff00ff"> </div> ===218=== <div style="border:2px solid #ff00ff"> </div> ===219=== <div style="border:2px solid #ff00ff"> </div> ===220=== <div style="border:2px solid #ff00ff"> </div> ===221=== <div style="border:2px solid #ff00ff"> </div> ===222=== <div style="border:2px solid #ff00ff"> </div> ===223=== <div style="border:2px solid blue"> </div> ===224=== <div style="border:2px solid #ff00ff"> </div> ===225=== <div style="border:2px solid #ff00ff"> </div> ===226=== <div style="border:2px solid #ff00ff"> </div> ===227=== <div style="border:2px solid blue"> </div> ===228=== <div style="border:2px solid #ff00ff"> </div> ===229=== <div style="border:2px solid blue"> </div> ===230=== <div style="border:2px solid #ff00ff"> </div> ===231=== <div style="border:2px solid #ff00ff"> </div> ===232=== <div style="border:2px solid #ff00ff"> </div> ===233=== <div style="border:2px solid blue"> </div> ===234=== <div style="border:2px solid #ff00ff"> </div> ===235=== <div style="border:2px solid #ff00ff"> </div> ===236=== <div style="border:2px solid #ff00ff"> </div> ===237=== <div style="border:2px solid #ff00ff"> </div> ===238=== <div style="border:2px solid #ff00ff"> </div> ===239=== <div style="border:2px solid blue"> </div> ===240=== <div style="border:2px solid #ff00ff"> </div> ===241=== <div style="border:2px solid blue"> </div> ===242=== <div style="border:2px solid #ff00ff"> </div> ===243=== <div style="border:2px solid #ff00ff"> </div> ===244=== <div style="border:2px solid #ff00ff"> </div> ===245=== <div style="border:2px solid #ff00ff"> </div> ===246=== <div style="border:2px solid #ff00ff"> </div> ===247=== <div style="border:2px solid #ff00ff"> </div> ===248=== <div style="border:2px solid #ff00ff"> </div> ===249=== <div style="border:2px solid #ff00ff"> </div> ===250=== <div style="border:2px solid #ff00ff"> </div> ===251=== <div style="border:2px solid blue"> </div> ===252=== <div style="border:2px solid #ff00ff"> </div> ===253=== <div style="border:2px solid #ff00ff"> </div> ===254=== <div style="border:2px solid #ff00ff"> </div> ===255=== <div style="border:2px solid #ff00ff"> </div> ===256=== <div style="border:2px solid #ff00ff"> </div> ===257=== <div style="border:2px solid blue"> </div> ===258=== <div style="border:2px solid #ff00ff"> </div> ===259=== <div style="border:2px solid #ff00ff"> </div> ===260=== <div style="border:2px solid #ff00ff"> </div> ===261=== <div style="border:2px solid #ff00ff"> </div> ===262=== <div style="border:2px solid #ff00ff"> </div> ===263=== <div style="border:2px solid blue"> </div> ===264=== <div style="border:2px solid #ff00ff"> </div> ===265=== <div style="border:2px solid #ff00ff"> </div> ===266=== <div style="border:2px solid #ff00ff"> </div> ===267=== <div style="border:2px solid #ff00ff"> </div> ===268=== <div style="border:2px solid #ff00ff"> </div> ===269=== <div style="border:2px solid blue"> </div> ===270=== <div style="border:2px solid #ff00ff"> </div> ===271=== <div style="border:2px solid blue"> </div> ===272=== <div style="border:2px solid #ff00ff"> </div> ===273=== <div style="border:2px solid #ff00ff"> </div> ===274=== <div style="border:2px solid #ff00ff"> </div> ===275=== <div style="border:2px solid #ff00ff"> </div> ===276=== <div style="border:2px solid #ff00ff"> </div> ===277=== <div style="border:2px solid blue"> </div> ===278=== <div style="border:2px solid #ff00ff"> </div> ===279=== <div style="border:2px solid #ff00ff"> </div> ===280=== <div style="border:2px solid #ff00ff"> </div> ===281=== <div style="border:2px solid blue"> </div> ===282=== <div style="border:2px solid #ff00ff"> </div> ===283=== <div style="border:2px solid blue"> </div> ===284=== <div style="border:2px solid #ff00ff"> </div> ===285=== <div style="border:2px solid #ff00ff"> </div> ===286=== <div style="border:2px solid #ff00ff"> </div> ===287=== <div style="border:2px solid #ff00ff"> </div> ===288=== <div style="border:2px solid #ff00ff"> </div> ===289=== <div style="border:2px solid #ff00ff"> </div> ===290=== <div style="border:2px solid #ff00ff"> </div> ===291=== <div style="border:2px solid #ff00ff"> </div> ===292=== <div style="border:2px solid #ff00ff"> </div> ===293=== <div style="border:2px solid blue"> </div> ===294=== <div style="border:2px solid #ff00ff"> </div> ===295=== <div style="border:2px solid #ff00ff"> </div> ===296=== <div style="border:2px solid #ff00ff"> </div> ===297=== <div style="border:2px solid #ff00ff"> </div> ===298=== <div style="border:2px solid #ff00ff"> </div> ===299=== <div style="border:2px solid #ff00ff"> </div> ===300=== <div style="border:2px solid #ff00ff"> </div> ==See also== ==Notes== <references group="note"> </references> ==References== <references><ref name="digit">[http://mathworld.wolfram.com/Digit.html Digit] on Wolfram Mathworld</ref> <ref name="concatenation">[http://mathworld.wolfram.com/Concatenation.html Concatenation] on Wolfram Mathworld</ref> <ref name="reversal">[http://mathworld.wolfram.com/Reversal.html Reversal] on Wolfram Mathworld</ref> <ref name="palindromic">[http://mathworld.wolfram.com/PalindromicNumber.html Palindromic] on Wolfram Mathworld</ref> <ref name="repdigit">[http://mathworld.wolfram.com/Repdigit.html Repdigit] on Wolfram Mathworld</ref> <ref name="repunit">[http://mathworld.wolfram.com/Repunit.html Repunit] on Wolfram Mathworld</ref> <ref name="pandigital">[http://mathworld.wolfram.com/PandigitalNumber.html Pandigital] on Wolfram Mathworld</ref> <ref name="smarandache">[http://mathworld.wolfram.com/SmarandacheNumber.html Smarandache number] on Wolfram Mathworld</ref> <ref name="harshad">[http://mathworld.wolfram.com/HarshadNumber.html Harshad number] on Wolfram Mathworld</ref> <ref name="repfigit">[http://mathworld.wolfram.com/KeithNumber.html Repfigit] on Wolfram Mathworld</ref> <ref name="rdi">[http://mathworld.wolfram.com/RecurringDigitalInvariant.html Recurring digial invariant] on Wolfram Mathworld</ref> <ref name="happy">[http://mathworld.wolfram.com/HappyNumber.html Happy number] on Wolfram Mathworld</ref> <ref name="unhappy">[http://mathworld.wolfram.com/UnhappyNumber.html Unhappy number] on Wolfram Mathworld</ref> <ref name="narcissistic">[http://mathworld.wolfram.com/NarcissisticNumber.html Narcissistic number] on Wolfram Mathworld</ref> <ref name="disarium">[http://oeis.org/A032799 Disarium number] on OEIS</ref> <ref name="automorphic">[http://mathworld.wolfram.com/AutomorphicNumber.html Automorphic number] on Wolfram Mathworld</ref> <ref name="cyclic">[http://mathworld.wolfram.com/CyclicNumber.html Cyclic number] on Wolfram Mathworld</ref> <ref name="frp">[http://mathworld.wolfram.com/FullReptendPrime.html Full Reptend Prime] on Wolfram Mathworld</ref> <ref name="friedman">[http://erich-friedman.github.io/mathmagic/0800.html Friedman numbers, Nice Friedman numbers]</ref> <ref name="almostfriedman">[http://erich-friedman.github.io/mathmagic/0713.html Fractional Friedman numbers, Redundant Friedman numbers, Almost Friedman numbers, Non-integral Friedman numbers]</ref> <ref name="friedmanpair">[http://erich-friedman.github.io/mathmagic/0619.html Anti-Friedman number, Shifted Frieman number, Friedman pair, Friedman loop]</ref> </references> ==External links== * [http://www.archimedes-lab.org/numbers/Num1_69.html Numbers] on Archimedes Lab
该页面使用的模板:
MediaWiki:Toc
(
查看源代码
)
返回
User:ColorfulGalaxy/Encyclopedia of numbers
。
开关有限宽度模式