User:ColorfulGalaxy/Encyclopedia of numbers:修订间差异
ColorfulGalaxy(留言 | 贡献) Expand |
ColorfulGalaxy(留言 | 贡献) 小 →65 |
||
(未显示同一用户的31个中间版本) | |||
第40行: | 第40行: | ||
* ... is the smallest positive prime number. | * ... is the smallest positive prime number. | ||
* ... is the only even positive prime number. | * ... is the only even positive prime number. | ||
* ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | |||
</div> | </div> | ||
第45行: | 第46行: | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest odd positive prime number. | * ... is the smallest odd positive prime number. | ||
* ... is the smallest Full Reptend Prime<sub>14</sub><ref name="frp"/>. | |||
</div> | </div> | ||
第66行: | 第68行: | ||
===7=== | ===7=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the third smallest repunit< | * ... is the third smallest repunit<sub>2</sub><ref name="repunit"/> number. | ||
* ... is the smallest positive two-digit<sub>7</sub><ref name="digit"/> number. | * ... is the smallest positive two-digit<sub>7</sub><ref name="digit"/> number. | ||
* ... is the second smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. | |||
* ... is the smallest positive strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | |||
* ... is the number of classical elements in Shidinn culture. See [[Seven elements]]. | |||
</div> | </div> | ||
第75行: | 第80行: | ||
* ... is the smallest positive composite Fibonacci number. | * ... is the smallest positive composite Fibonacci number. | ||
* ... is the largest cube in the Fibonacci sequence. | * ... is the largest cube in the Fibonacci sequence. | ||
* ... is the second smallest repunit< | * ... is the second smallest repunit<sub>7</sub><ref name="repunit"/> number. | ||
* ... is the third smallest positive 1-automorphic<sub>14</sub><ref name="automorphic"/> number. | |||
</div> | </div> | ||
第81行: | 第87行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive odd composite number. | * ... is the smallest positive odd composite number. | ||
* ... is the second smallest Smarandache<sub>7</sub><ref name="smarandache"/> number. | |||
</div> | </div> | ||
第86行: | 第93行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive even number ''n'' where ''n''-1 is a Fermat pseudoprime<sub>''n''</sub>. | * ... is the smallest positive even number ''n'' where ''n''-1 is a Fermat pseudoprime<sub>''n''</sub>. | ||
* ... is the smallest positive integer that is not a Harshad<sub>7</sub><ref name="harshad"/> number. | |||
* ... is a Narcissistic<sub>7</sub><ref name="narcissistic"/> number. | |||
* ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | |||
</div> | </div> | ||
第102行: | 第112行: | ||
* ... is the number of Archimedean solids. | * ... is the number of Archimedean solids. | ||
* ... is the largest digit<sub>14</sub><ref name="digit"/>. | * ... is the largest digit<sub>14</sub><ref name="digit"/>. | ||
* ... is the third smallest repunit<sub>3</sub><ref name="repunit"/> number. | |||
* ... is an RDI<sub>7</sub><ref name="rdi"/> of order 2. | |||
* ... is the smallest positive odd Fibonacci number that is not palindromic<sub>2</sub><ref name="palindromic"/>. | |||
</div> | </div> | ||
第112行: | 第125行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive odd composite number that is not a perfect power. | * ... is the smallest positive odd composite number that is not a perfect power. | ||
* ... is the second smallest repunit< | * ... is the second smallest repunit<sub>14</sub><ref name="repunit"/> number. | ||
</div> | </div> | ||
第118行: | 第131行: | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the second smallest positive tesseractic number. | * ... is the second smallest positive tesseractic number. | ||
* ... is the smallest positive integer with five positive factors. | |||
* ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. | |||
* ... is the second smallest Smarandache<sub>14</sub><ref name="smarandache"/> number. | |||
* ... is the smallest positive composite number whose reversal<sub>14</sub><ref name="reversal"/> is prime. | |||
</div> | </div> | ||
===17=== | ===17=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is a Fermat prime. | |||
* ... is the smallest prime number that is the concatenation<sub>7</sub><ref name="concatenation"/> of two prime numbers. | |||
</div> | </div> | ||
===18=== | ===18=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest two-digit<sub>14</sub><ref name="digit"/> number in the Fibonacci-like sequence starting with 2 and 1. | |||
</div> | </div> | ||
===19=== | ===19=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest positive odd prime number whose reversal<sub>2</sub><ref name="reversal"/> is composite. | |||
</div> | </div> | ||
===20=== | ===20=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> is pandigital<sub>7</sub><ref name="pandigital"/>. | |||
</div> | </div> | ||
===21=== | ===21=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the third smallest repunit<sub>4</sub><ref name="repunit"/> number. | |||
* ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>14</sub><ref name="happy"/> number. | |||
</div> | </div> | ||
第152行: | 第171行: | ||
===23=== | ===23=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest prime number that is not a twin prime. | |||
</div> | </div> | ||
===24=== | ===24=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> ends in three identical digits<sub>7</sub><ref name="digit"/>. | |||
</div> | </div> | ||
===25=== | ===25=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. | |||
* ... is an RDI<sub>14</sub><ref name="rdi"/> of order 2. | |||
* ... is the smallest positive integer ''n'' such that 2<sup>''n''</sup> starts in three identical digits<sub>7</sub><ref name="digit"/> and ends in three identical digits<sub>7</sub>. | |||
</div> | </div> | ||
第182行: | 第203行: | ||
===29=== | ===29=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is the smallest positive odd prime number whose reversal<sub>14</sub><ref name="reversal"/> is composite. | |||
* ... is the second smallest two-digit<sub>14</sub><ref name="digit"/> number in the Fibonacci-like sequence starting with 2 and 1. | |||
* ... is a repfigit<sub>14</sub><ref name="repfigit"/> number. | |||
</div> | </div> | ||
===30=== | ===30=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is a repdigit<sub>14</sub><ref name="repdigit"/> number. | |||
* ... is a strobogrammatic<sub>[[希顶字母数字|xdi8]]</sub> number. | |||
</div> | </div> | ||
===31=== | ===31=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is a Mersenne prime. | |||
* ... is the smallest prime number that is the concatenation<sub>14</sub><ref name="concatenation"/> of two prime numbers. | |||
* ... is the third smallest repunit<sub>5</sub><ref name="repunit"/> number. | |||
</div> | </div> | ||
===32=== | ===32=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is a repdigit<sub>7</sub><ref name="repdigit"/> number. | |||
* ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. | |||
</div> | </div> | ||
第207行: | 第234行: | ||
===34=== | ===34=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the smallest known number in a Friedman<sub>14</sub> loop<ref name="friedmanpair"/>: | |||
:: 2<sup>6</sup>=64 | |||
:: 8<sup>4</sup>=4096 | |||
:: 6×(12×8-1)=570 | |||
:: 2×12+10=34 | |||
</div> | </div> | ||
===35=== | ===35=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is in a Friedman<sub>14</sub> loop<ref name="friedmanpair"/>: | |||
:: 7<sup>3</sup>=343 | |||
:: (1+10)×7=77 | |||
:: 5×7=35 | |||
:: 7<sup>2</sup>=49 | |||
</div> | </div> | ||
第222行: | 第257行: | ||
===37=== | ===37=== | ||
<div style="border:2px solid blue"> | <div style="border:2px solid blue"> | ||
* ... is an RDI<sub>14</sub><ref name="rdi"/> of order 2. | |||
</div> | </div> | ||
第237行: | 第272行: | ||
===40=== | ===40=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is in a Friedman<sub>14</sub> pair<ref name="friedmanpair"/>: | |||
:: 12<sup>2</sup>=144 | |||
:: 4×10=40 | |||
</div> | </div> | ||
第262行: | 第299行: | ||
===45=== | ===45=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ... is the number of letters in the [[Shidinn alphabet]]. | |||
* ... is a narcissistic<sub>7</sub><ref name="narcissistic"/> number. | |||
* ... is the third smallest<sup>[lɤ ɛyuə iq<small><small>8</small></small> q<small><small>6</small></small>]</sup> positive integer whose tesseractic is a happy<sub>7</sub><ref name="happy"/> number. | |||
</div> | </div> | ||
第362行: | 第401行: | ||
===65=== | ===65=== | ||
<div style="border:2px solid #ff00ff"> | <div style="border:2px solid #ff00ff"> | ||
* ..., as [http://mathworld.wolfram.com/ExpandedNotation.html 4×14+9], is a Cyclic<sub>14</sub> number<ref name="cyclic"/>. | |||
</div> | </div> | ||
第1,550行: | 第1,589行: | ||
==References== | ==References== | ||
<references><ref name="digit">[http://mathworld.wolfram.com/Digit.html Digit] on Wolfram Mathworld</ref> | <references><ref name="digit">[http://mathworld.wolfram.com/Digit.html Digit] on Wolfram Mathworld</ref> | ||
<ref name="concatenation">[http://mathworld.wolfram.com/Concatenation.html Concatenation] on Wolfram Mathworld</ref> | |||
<ref name="reversal">[http://mathworld.wolfram.com/Reversal.html Reversal] on Wolfram Mathworld</ref> | |||
<ref name="palindromic">[http://mathworld.wolfram.com/PalindromicNumber.html Palindromic] on Wolfram Mathworld</ref> | <ref name="palindromic">[http://mathworld.wolfram.com/PalindromicNumber.html Palindromic] on Wolfram Mathworld</ref> | ||
<ref name="repdigit">[http://mathworld.wolfram.com/Repdigit.html Repdigit] on Wolfram Mathworld</ref> | <ref name="repdigit">[http://mathworld.wolfram.com/Repdigit.html Repdigit] on Wolfram Mathworld</ref> | ||
<ref name="repunit">[http://mathworld.wolfram.com/Repunit.html Repunit] on Wolfram Mathworld</ref> | <ref name="repunit">[http://mathworld.wolfram.com/Repunit.html Repunit] on Wolfram Mathworld</ref> | ||
<ref name="pandigital">[http://mathworld.wolfram.com/PandigitalNumber.html Pandigital] on Wolfram Mathworld</ref> | |||
<ref name="smarandache">[http://mathworld.wolfram.com/SmarandacheNumber.html Smarandache number] on Wolfram Mathworld</ref> | |||
<ref name="harshad">[http://mathworld.wolfram.com/HarshadNumber.html Harshad number] on Wolfram Mathworld</ref> | |||
<ref name="repfigit">[http://mathworld.wolfram.com/KeithNumber.html Repfigit] on Wolfram Mathworld</ref> | |||
<ref name="rdi">[http://mathworld.wolfram.com/RecurringDigitalInvariant.html Recurring digial invariant] on Wolfram Mathworld</ref> | |||
<ref name="happy">[http://mathworld.wolfram.com/HappyNumber.html Happy number] on Wolfram Mathworld</ref> | |||
<ref name="unhappy">[http://mathworld.wolfram.com/UnhappyNumber.html Unhappy number] on Wolfram Mathworld</ref> | |||
<ref name="narcissistic">[http://mathworld.wolfram.com/NarcissisticNumber.html Narcissistic number] on Wolfram Mathworld</ref> | |||
<ref name="automorphic">[http://mathworld.wolfram.com/AutomorphicNumber.html Automorphic number] on Wolfram Mathworld</ref> | |||
<ref name="cyclic">[http://mathworld.wolfram.com/CyclicNumber.html Cyclic number] on Wolfram Mathworld</ref> | |||
<ref name="frp">[http://mathworld.wolfram.com/FullReptendPrime.html Full Reptend Prime] on Wolfram Mathworld</ref> | |||
<ref name="friedman">[http://erich-friedman.github.io/mathmagic/0800.html Friedman numbers, Nice Friedman numbers]</ref> | |||
<ref name="almostfriedman">[http://erich-friedman.github.io/mathmagic/0713.html Fractional Friedman numbers, Redundant Friedman numbers, Almost Friedman numbers, Non-integral Friedman numbers]</ref> | |||
<ref name="friedmanpair">[http://erich-friedman.github.io/mathmagic/0619.html Anti-Friedman number, Shifted Frieman number, Friedman pair, Friedman loop]</ref> | |||
</references> | </references> | ||
==External links== | ==External links== | ||
* [http://www.archimedes-lab.org/numbers/Num1_69.html Numbers] on Archimedes Lab | * [http://www.archimedes-lab.org/numbers/Num1_69.html Numbers] on Archimedes Lab |
2025年1月8日 (三) 21:22的版本
This article is inspired by this article, which was biased towards decimal properties and did not mention imaginary numbers. This article, instead, is biased towards septenary and tetradecimal properties, though the numbers are written in decimal. Shidinn-related entries are also welcome.
目录 | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 7 | 14 | 49 | 196 | 343 | 2744 |
Top of page — Legend — See also — External links |
Legend
Positive prime numbers
Number (excluding positive prime numbers) whose absolute value is an integer
Number whose absolute value is a rational number that is not integer
Number whose absolute value is an algebraic irrational number
Number whose absolute value is a transcendental real number
Unknown/approximation
Some terms can have subscripts. "Digit14"[1] is read as "tetradecimal digit".
Numbers
0
- ... is the smallest non-negative number.
- ... is the additive identity.
1
- ... is the smallest positive number.
- ... is the multiplicative identity.
2
- ... is the smallest positive prime number.
- ... is the only even positive prime number.
- ... is an RDI7[2] of order 2.
3
- ... is the smallest odd positive prime number.
- ... is the smallest Full Reptend Prime14[3].
4
- ... is the smallest positive composite number.
5
- ... is the smallest positive odd number that is not a repunit2[4] number.
- ... is the number of Platonic solids.
6
- ... is the smallest positive composite number that is not a perfect power.
- ... is the largest digit7[1].
7
- ... is the third smallest repunit2[4] number.
- ... is the smallest positive two-digit7[1] number.
- ... is the second smallest positive 1-automorphic14[5] number.
- ... is the smallest positive strobogrammaticxdi8 number.
- ... is the number of classical elements in Shidinn culture. See Seven elements.
8
9
- ... is the smallest positive odd composite number.
- ... is the second smallest Smarandache7[6] number.
10
11
- ... is the smallest positive odd prime number that is not palindromic2[9].
12
- ... is the smallest abundant number.
13
14
- ... is the smallest positive two-digit14[1] number.
15
- ... is the smallest positive odd composite number that is not a perfect power.
- ... is the second smallest repunit14[4] number.
16
17
- ... is a Fermat prime.
- ... is the smallest prime number that is the concatenation7[12] of two prime numbers.
18
- ... is the smallest two-digit14[1] number in the Fibonacci-like sequence starting with 2 and 1.
19
- ... is the smallest positive odd prime number whose reversal2[11] is composite.
20
- ... is the smallest positive integer n such that 2n is pandigital7[13].
21
22
23
- ... is the smallest prime number that is not a twin prime.
24
- ... is the smallest positive integer n such that 2n ends in three identical digits7[1].
25
26
27
28
29
30
31
32
33
34
- ... is the smallest known number in a Friedman14 loop[16]:
- 26=64
- 84=4096
- 6×(12×8-1)=570
- 2×12+10=34
35
- ... is in a Friedman14 loop[16]:
- 73=343
- (1+10)×7=77
- 5×7=35
- 72=49
36
37
- ... is an RDI14[2] of order 2.
38
39
40
- ... is in a Friedman14 pair[16]:
- 122=144
- 4×10=40
41
42
43
44
45
- ... is the number of letters in the Shidinn alphabet.
- ... is a narcissistic7[8] number.
- ... is the third smallest[lɤ ɛyuə iq8 q6] positive integer whose tesseractic is a happy7[14] number.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
See also
Notes
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Digit on Wolfram Mathworld
- ↑ 2.0 2.1 2.2 2.3 Recurring digial invariant on Wolfram Mathworld
- ↑ Full Reptend Prime on Wolfram Mathworld
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Repunit on Wolfram Mathworld
- ↑ 5.0 5.1 Automorphic number on Wolfram Mathworld
- ↑ 6.0 6.1 Smarandache number on Wolfram Mathworld
- ↑ Harshad number on Wolfram Mathworld
- ↑ 8.0 8.1 8.2 8.3 Narcissistic number on Wolfram Mathworld
- ↑ 9.0 9.1 Palindromic on Wolfram Mathworld
- ↑ 10.0 10.1 10.2 Repdigit on Wolfram Mathworld
- ↑ 11.0 11.1 11.2 Reversal on Wolfram Mathworld
- ↑ 12.0 12.1 Concatenation on Wolfram Mathworld
- ↑ Pandigital on Wolfram Mathworld
- ↑ 14.0 14.1 Happy number on Wolfram Mathworld
- ↑ Repfigit on Wolfram Mathworld
- ↑ 16.0 16.1 16.2 Anti-Friedman number, Shifted Frieman number, Friedman pair, Friedman loop
- ↑ Cyclic number on Wolfram Mathworld
引用错误:<references>
内定义的name(名称)为“unhappy”的<ref>
标签未在前文内使用。
引用错误:<references>
内定义的name(名称)为“friedman”的<ref>
标签未在前文内使用。
引用错误:<references>
内定义的name(名称)为“almostfriedman”的<ref>
标签未在前文内使用。
External links
- Numbers on Archimedes Lab